If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-20x-28=0
a = 11; b = -20; c = -28;
Δ = b2-4ac
Δ = -202-4·11·(-28)
Δ = 1632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1632}=\sqrt{16*102}=\sqrt{16}*\sqrt{102}=4\sqrt{102}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{102}}{2*11}=\frac{20-4\sqrt{102}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{102}}{2*11}=\frac{20+4\sqrt{102}}{22} $
| 2+2x=86 | | -6=-5+u | | 4x4+4x3+-20x2+2x+1=0 | | 1/6x+1/30x-1/5x=0 | | 3-3(x-)=30 | | 2k+9=2(4k-3) | | 2/3w=9 | | 12.4x(-6.3)=-78.12 | | n–7=3 | | 1/6x+1/30x=1/5x | | 7p+4/8=3 | | 28=x/4+3 | | x2-3x-4=14 | | x/3-2/3=1/3 | | 9t-14=6t+4 | | (3x+15)-(-4x-12)=0 | | 9p+-17=10 | | 10+p/2=10 | | h–4=6 | | 2(t=1)=10 | | x/6+17=23 | | 2x+10=3+5x-5 | | 0=r+4 | | 23=5x-27 | | 4n/5+2=2n/5-4 | | 0=0.013x^2-1.19x+28 | | 6-8x-4=-8+3x-12 | | 2-5|5m-5=-73 | | 5y+-4y=18 | | 9(8x-3)=27+72x | | 4x-3/2=2/5 | | (7z+9)-(6z+12)=-6 |